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Special Relativistic Gravitational Theory 
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Based on special relativity, we introduce a way to develop a new field theory 
from (1) the relativistic property of  the particle coupling coefficient with the 
field, and (2) the field due to a static point source. As an example,  we discuss 
a theory of electromagnetic and gravitational fields. The results of  this special 
relativistic gravitational theory for the redshift and the deflection of light are the 
same as those deduced from general relativity. The results of  experiments on 
the planetary perihelion procession shift and on an additional "short-range 
gravity" are more favorable to the special relativistic gravitational theory than 
to general relativity. We put forward a new idea to test experimentally whether 
the equivalence principle of  general relativity is correct. 

1. INTRODUCTION AND CONCLUSION 

As is well known, the explanation of the anomalous perihelion shift 
of Mercury's orbit was a triumph of general relativity. However, between 
1967 and 1974 there was considerable controversy over whether the peri- 
helion shift was a confirmation or a refutation of general relativity. This 
controversy has not yet been concluded because the disagreement of  the 
contribution of  a solar quadrupole moment remains unresolved (Clifford, 
1981). Some people hope to find a new gravitational theory that can avoid 
the possible difficulty of  the perihelion shift. 

Recently, Stacey et al. (1987a) deduced from their experiments some 
results which suggest that gravity contains a Yukawa potential contribution. 
One cannot deduce this additional Yukawa potential from the equation of 
the metric field of general relativity. However, it is impossible that one part 
of  gravity is relative to a metric field while another part is independent of 
it. This fact means that we need a new gravitational theory different from 
general relativity. 
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So far, all interaction theories except gravitational theory are based on 
special relativity. Therefore, it is natural to explore the possiblity of develop- 
ing a gravitational theory based on special relativity. This is the main purpose 
of this paper. Our discussion proves that the gravitational field must be a 
tensor of rank three, and that the gravitational force contains four terms 
from special relativity. But previous gravitational theories only take one 
term into account. So the consequences of a theoretical calculation of the 
redshift, light deflection, and the perihelion shift contradict the experimental 
results. This leads to the conclusion that one cannot explain the experimental 
results from a gravitational theory based on special relativity. 

In the following discussion, we prove that if we take the other terms 
into account, then the results of  the theoretical calculation of the redshift 
and light deflection are the same as those deduced from general relativity, 
and the result for the perihelion shift allows a slight difference from the 
corresponding result of  general relativity. The important thing is that it is 
easy to find the field equation of an additional Yukawa potential. All the 
experimental results are more favorable to the special relativistic gravita- 
tional theory than to general relativity. Of course, we still need some new 
experiments to determine whether the special relativistic gravitational theory 
or general relativity is correct. 

Generally the equivalence principle of general relativity has assumed 
that an accelerated frame in a region free of gravitational fields is equivalent 
to a rest frame in a given infinitesimal region. We can now consider the 
premises of  this principle. First, the gravitational mass is equivalent to 
inertial mass. Second, the direction and the magnitude of gravity are 
independent of those of  velocity. 

From the point of  view of the special relativistic gravitational field 
theory, some terms of gravity depend not only on mass, but also on velocity. 
Hence the principle of equivalence is incorrect in general. But it is difficult 
to observe these effects in experiment because the predicted effects of special 
relativity are very slight. 

Discussing within the context of  general relativity, Weinberg concluded 
that the principle of equivalence is tenable if the linear dimension of the 
particle is much smaller than the dimension of the gravitational field. On 
the other hand, we can easily see the difference from our discussion. 

2. G E N E R A L  C O N S I D E R A T I O N S  

In general, the force exerted on a particle by a specific field depends 
upon the velocity of the particle. Suppose that the 4-dimensional force K~ 
can be expanded in a series of powers of 4-dimensional velocity U~, 

K ~(U ,~ )  = T~ + T~,~U,~ + T~,~pU,~Up + .  �9 �9 (1) 
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where 

Kv , ~0Kv u -0' 1 02K~ 
= I T w p -  , . . .  u~=o _ 2 a U,~ a U, u~=o 

(2) 

According to special relativity, both K~ and U~ are tensors of first rank. 
So Tv, T~,  and T~p are tensors of first, second, and third rank, respectively. 
Substituting equation (1) into K4 = iK-u /c ,  where u is the 3-dimensional 
velocity and K is the 3-dimensional part of K~, we obtain 

T~U~=O, Tv~U~U~=O, T~oU~U~U o =0 (3) 

Since every T is velocity independent, from equation (3) we obtain that 
the tensors defined in equation (2) must satisfy 

T~=0, T ~ +  T,~ = 0 

T~,~o + T~o. + To.~ + T~o~ + To~ + T,~ o =0 (4) 

Denote the nth term on the right-hand side of equation (1) by K(. ~), e.g., 

K ~  K ~  ) T~,~U,~, K ~  ) T~oU,~Up (5) 

The force exerted on a particle by one type of field is proportional to the 
strength of the field. Using H~, H~ ,  and H~p to express the strength of 
field, then 

T~ = Ix (ol ) H ~ ,  T~ = IZ (o2 ) H ~ ,  T~p = 1~ (o3 ) H.,~p (6) 

where H~, H ~ ,  and H~p are tensors of first, second, and third rank, 
respectively. The coefficient/X(o ~) is invariant under Lorentz transformation; 
it is defined as the particle coupling coefficient with the tensor field of rank 
n. The coupling coefficient with the electromagnetic field is the charge q, 
and the coupling coefficient with the gravitational field is the rest mass too. 

Considering equation (5) and the relations 

K,  = y{F, iF .  u/c}, U; = y{u, ic} (7) 

where F and u are the 3-dimensional force and velocity, respectively, and 
3' = (1 - u2c -2) 1/2, with c the velocity of light, we have the expression of 
the 3-dimensional force by the tensor field of rank n, 

F~ ~)= ~ . s  ... "~- ( i c ) n - 2 ( I - I j k 4 4  ''' -~-/ ' / j4k4.--  -[-  H j 4 4 k - . .  "1- " " ")Uk 

+ .  �9 . +  ~ ,  . . . .  u~u~um. �9 . ]  ( 8 )  

~(~= ~(o~y ~-~ (9) 

The construction of the force expression is/z (~) * {polynomial of power 
of uk}, and its maximum power of uk is ( n - 1 ) .  The /z (~) is called the 
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coupling coefficient of  the moving particle with the field of  rank n. Corre- 
spondingly,/X(o ") is the coefficient of the rest particle. The relation between 
~(n) and 3' can be called the relativistic property of  the coupling coefficient. 
We should emphasize that the form of the 3-dimensional force exerted on 
a particle by a field as well as the dependence of the coupling coefficient 
of  the moving particle on the velocity are completely determined by the 
rank of  the tensor field. Conversely, we know that the relativistic property 
of  the coupling coefficient can determine the rank of the tensor field. 

Of  course, another type of relation between K and U is 

K (n) = I~oH, w...,, UvU~"  �9 �9 Uo, 

but we may prove that K~ n) satisfies 

K~ ") = 0  

for this type of relation, from K~ "~ Uv = 0. 
Now consider several simple situations. 
(i) We assume that the coupling coefficient of  the moving particle is 

/x(~)=/~ol)y 1, and the field acting on the particle is a first-rank tensor 
(4-dimensional vector field). According to equations (4) and (6), we have 

H .  = 0  (10) 

This means that no such vector field exists. In other words, we cannot find 
a kind of  field with coupling coefficient /z (~). This agrees with present 
experimental observations. 

(ii) Suppose that the coupling coefficient of  the moving particle has 
nothing to do with the velocity of  the particle. In this case the field must 
be a tensor of  rank two: p(2) = tL(o2). 

(iii) The coupling coefficient of  a moving particle with a tensor field 
of  rank three is t~ (3) = tL(o3)y. The gravitational mass of  a particle is m = moy .  

So this implies that the gravitational field is a tensor of  rank three. 
There is reason to believe that a tensor field of  rank higher than three 

may exist, but it has not yet been observed. 

3. E L E C T R O M A G N E T I C  INTERACTION 

3.1. The First Fundamental Hypothesis of  Electromagnetic Theory 

The most  important  experimental fact is that the charge of a particle 
is independent  of  its velocity, namely that the coupling coefficient of  a 
moving particle is/z (2) = q. This experimental result can be taken as the first 
hypothesis of  the electromagnetic theory. From this we immediately obtain 
the following result. 
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(i) The electromagnetic field is a tensor of rank two. 
(ii) According to equations (4) and (6), the field strength must be an 

antisymmetric tensor, 

H ~ =  - H ~  (11) 

There are only six independent components. With the usual notation, we 
can write 

0 B3 -B2 - i E 1 / c \  

--8 3 0 B1 - iE2/c  I 
H ~  (12) | 

B 2 --B 1 0 --iE3/c I 

o / iE1/ e iE2/ e iE3/ c 

(iii) In this case, equation (8) has the simple form 

E l  2) _____ tx(2){icgi4 d- Hijuj} (13) 

o r  

F (2)= q ( E + u x B )  (14) 

This is just the Lorentz force, also only a consequence of the first hypothesis. 
We need to take two points into consideration. Generally speaking, 

the 3-dimensional force is a function of 3-dimensional velocity. It can be 
expanded as 

F~(uj)= F~(u~=O) +/'8F~\| I 1 [ O2F~ \ - -  . u j + - / - - /  . u j u k + . . .  (15) 
\Ouj/.j=o 2 \Ouj OUk/.j=o 

Therefore we should know if it contains a term depending on l.ijtl k. The 
reason that we do not observe such a term in the present investigation is 
perhaps due to the small particle velocity. Can we observe effects represent- 
ing this term when u --> c? The answer derived from equation (13) is negative. 
It would lead to a collapse of  special relativity if one could observe this 
term experimentally. So far such an observation has not been established. 

In the general case, the second-rank tensor can be split into symmetric 
and antisymmetric parts, 

Hij = S u + eijkBk (16) 

where S u is the symmetric part of Hu, and the direction of u �9 9 o is not 
perpendicular to u. Equation (11) means that only the antisymmetric part 
appears in H u. Therefore, the direction of  the velocity-dependent force is 
only perpendicular to u. This agrees with current experiments. 
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3.2. The Second Fundamental Hypothesis of  Electromagnetic Theory 

The fields due to a static charge are 

E = qr/(4rreor3), B = 0 (17) 

The electromagnetic field due to a moving charge can be derived from 
equation (17) by utilizing a Lorentz transformation. Thus, we can further 
establish the electromagnetic equations. We can adopt equation (17) as the 
second hypothesis of electromagnetic theory. 

4. GRAVITATIONAL INTERACTION 

4.1. The First Fundamental Hypothesis of  Gravitational Theory 

The first fundamental conclusion of gravitation experiments is the 
equivalence of inertial and gravitational mass; this means that the coupling 
coefficient of a particle with the gravitational field is m = mot =/~(3~. In 
general, we call this conclusion of experiment the first fundamental 
hypothesis of gravitational theory. We can derive three conclusions from 
this fundamental hypothesis immediately. 

(i) The gravitational field must be a tensor of rank three. 
(ii) According to equations (4) and (6), the gravitational field strengths 

satisfy the relation 

H~o+ H~p~+ Ho~+ H~o~+ Ho~+ H~o=O (18) 

(iii) Considering equation (8), we obtain 

FI 3) = tz (3)[-c2 Hi44 + ic( H,j4 + H,4j) uj + Hqtuju,] (19) 

Here we use the symbol Gz to express the third term of this formula, 

Gi = rnHijtujut (20) 

From equation (18), we can prove that this term is the component of a 
vector which is perpendicular to u; then it can be expressed in the form 
mc-2(u x ~ .  u). Therefore, the gravitational force has the form 

F (3)--- m ( E + l u  x B + l u  �9 ~ + cl~ u x ~ .  u)  (21) 
\ c c 

where 

E, = -c2U,44, B, = �89 Uk;4+ ~4~  - nk4j) 
1.2 + Po=~,c  (Hij4 Hji4+ Hi4j + I-Ij4,) 

Ri, = �89 -- Hki, + Hj,k -- Hko) 

where (i,j, k) takes an even permutation of (1, 2, 3). 

(22) 
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4.2. The Representation Subspace of the Lorentz Group 

Equations (2) and (6) mean that H~p is symmetric for ~, p: 

H.~ o = H~.,. (23) 

Then equation (18) becomes 

H ~  o + H~o ~ + Hp,~ = 0 (24) 

Equations (23) and (24) reduce the 64-dimensional representation space 
into a 20-dimensional subspace. This corresponds to the fact that we can 
only measure 3 +3 + 6 +  8 = 20 experimental values of field strengths [the 
coefficients of each term of equation (21)]. 

The third-rank tensor H~p can be confirmed by the direct product  of 
a partial differential operator O/OX~ with a tensor potential AcT o of rank 
two. Suppose that A~ o is a symmetric tensor, 

Ao-. = A,.~ (25) 

In the general case. H~.~ o can be expressed as 

OA~p + OApv OA~,~ 
a2 ~7--. + a3 (26) 

From equations (23)-(25). we get 

a2 = 1:/3 = - l a l  (27) 

If  we choose a~ = 1. then we have 

OA=p 10A~p 10A~.. 
Hv.~P- OX.. 2 0X~ 2 0Xp 

Substituting equation (28) into (22). we obtain 

B' = --7- \ O x: O x---~ ] 

ic 2 (OA4j+OA4i 20A~ 

(28) 

(29) 
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4.3. Discuss ion of  the Gravitational Experimental  Results  
in the Range r > 1000 m 

4.3.1. The Gravitational Field Due to a Static Spherical Body 

To further develop the equations of  the gravitational field, we should 
discuss the possible form of the gravitational potential tensor from the angle 
of  the space rotation group. Under  the space rotation, A44 iS scalar, Aj4 and 
A4j are 3-vectors, and A u is a 3 x 3 tensor. Because of the spherical symmetry 
of the source, they have the form 

A44 = ~(r), Aj4 = a4: = i~ ( r ) xJ r  

au  = ~(r)~u + O(r)xixjr2 (30) 

Furthermore,  all of  the A~p are time independent.  Substituting (30) into 
(29), we obtain 

Ei = - c  2 d~ xi 
dr r 

B~ = 0 

, ,  1 (31) 
L \ d r  r/~-+raUJ 

Ril = c 2 d~l Xjakl - Xkt~jl 
dr r 

where 

d~ d~ 0 

dr dr r 

When the source of the field is due to a static sphere, Ril is not dependent  
on ~" or 0 singly but on ~ only. Now let us assume that 0 = 0 in the following 
discussion. 

4.3.2. Planetary Motion in Gravitational Fields Due to a Static Sphere 

Substituting (31) into (21), we obtain 

\ d r  r /  dr \ r dr / J 

where er is the unit vector in the r direction, and u~ is the r component  of  
u, respectively. From this formula, we get 

d w = ( _ d ~  l d~l 2 ~ 2"~ 
w \ dr Ur--C d--r l'lr --~r U~p) dt (33) 

d(rmu~) (c71+ d~l ur) dt (34) 
rmu, \ r dr 
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where w = m c  2 and u~ is the r component  of  u. The solution of (34) is 

I I r )1 rmu~ = (rmu~)lro exp - c  ~ dt  - ~l(r)  + ~l(ro (35) ro r 
I f  ~ ~ 0, then the angular momentum will decrease with time in the range 
~ > 0  and increase in the range ~7<0. But we never observe this 
phenomenon,  so we say that the Aj4 component  of  a gravitational field due 
to a static spherical body is zero, namely that 

A j 4  = A 4 j  = i~l( r ) x j /  r = 0 (36) 

Thus, we can derive two integrals of  the motion of a planet, 

w = Wo e x p [ - ~ ( r )  + s~(r0)] (37) 

and 

rmu~ = (rmu~)lro exp[-~ ' l ( r )  + ~'l(ro)] (38) 

Although this formula suggests that the angular momentum varies with r, 
in the following discussion we shall prove that ffl(r) - G M / c Z r .  Due to this, 
the deviation of  the angular momentum of Mercury is within a few parts 
in 1 0  TM , which can be considered in the error range of experiment. Therefore, 
this conclusion does not contradict the result of  astronomical observation. 
From equations (37) and (38), we get 

ru~ = h exp[~(r)  - ~l(r)] (39) 

u2~+ ur c 2 -  k 2 exp[2sC(r)] (40) 

where h and k are constant. According to the inverse square law of gravity, 
~(r) and ~ l ( r )  c a n  be expanded as 

~:(r) = t e l r - l h  - a2r -2+  �9 �9 �9 (41) 

ffl (r) =/31 r -1 +/32r -2 +" �9 �9 (42) 

where a l ,  a 2 , / 3 1 ,  and/32 are unknown coefficients which can be determined 
by present experimental  results. From the conclusions of  classical gravita- 
tional theory, we can forecast that a2<< al  and /32<</31. Substituting 
equations (41) and (42) into equations (39) and (40), we obtain the equation 
of orbital motion of a planet  and get the perihelion shift of  the planet, 

Aq~ a ( l _  e2 ) 

where e and a are the eccentricity and semimajor axis of  the orbit, 
respectively. 
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4.3.3.  L i g h t  P r o p a g a t i o n  in a G r a v i t a t i o n a l  F i e l d  D u e  to a 

S t a t i c  S p h e r i c a l  B o d y  

Since Maxwel l ' s  equat ions  only descr ibe an e lec t romagnet ic  wave  
p ropaga t ing  in gravity-free space,  we must  develop  a new set o f  equat ions  
which can descr ibe e lec t romagnet ic  wave p ropaga t i on  in gravi ta t ional  fields. 
We discuss this p rob l em in Section 5. 

Here  let us consider  a pho ton  as a part icle  with velocity c and mass  
m = wc -2. Therefore ,  the pho ton  is acted u p o n  by  gravity,  and  we can derive 
an equa t ion  for  the orbit  o f  a pho ton  in a gravi ta t ional  field. The fol lowing 
discussion shows that  bo th  me thods  give the same result. 

Accord ing  to the relat ions of  m o m e n t u m ,  energy, and mass  of  special  
relativity, 

17, = m u ,  w = m e  2 (44) 

we have 

G 2 - w2c  -2 = rn2(u  2 -  c 2) = -m2oc  2 (45) 

for  all kinds of  particles,  where  mo is invar iant  unde r  the Lorentz  t r ans forma-  
tion. This relat ion agrees with the first hypothes is  o f  gravi ta t ional  theory.  
Therefore ,  for  all kinds o f  part icle  ( including the l imiting case u ~ c, mo + 0), 
equat ions  (21), (37), and  (38) are still correct.  

F rom equat ion  (37), we have 

w = Wo[ 1 - ~:(r) + �89 + .  �9 �9 ] (46) 

where  Wo is the energy of  a pho ton  at r = oQ Accord ing  to the q u a n t u m  
theory  of  the e lec t romagnet ic  field, w = by, we obta in  

V _ V o = _ V o [ a l r - l + ( a 2  1 2 -2 --~c~l)r + ' ' ' ]  (47) 

This  is the fo rmula  of  the redshift .  
N o w  cons ider  light deflected in the gravi ta t ional  field of  the Sun. Using 

equat ion  (39) and 
2 2 ~ C 2  u r + uv (48) 

where  ur and  uv are the r c o m p o n e n t  and the q~ c o m p o n e n t  of  the veloci ty 
o f  light, respectively,  we derive the orbit  equa t ion  o f  light 

d o )  2 c 2 
~-~/ = ~-7 { 1 + 2[~'~(p) - ~:(p)] + - -  -} - p (49) 

where  p = r -~. There fore  the deflection angle of  the light is 

2 ( / 3 , -  cq) 2( /31-  a , )  2 
a = R R ~ (50)  

where  R is the radius of  the Sun. 
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4.3.4. Discussion o f  the Results o f  Gravitational Experiments 

The experimental values of the redshift, the angle of deflection of  light, 
and the planetary perihelion shift are 

G M  
v -  Vo = Vo c2R 

4 G M  
t3 = c2 R (51) 

67rGM(1 + A) 
Aq~-  a ( 1 - e  2) 

respectively. Comparing the experimental values with the first-order 
approximate theoretical values, we have 

- G M  
O~ 1 = - - [ 3 1  - -  C2 

C~z = -3A - -  

n(r) =o 

G 2 M  2 
C4 (52) 

Most physicists take A = 0 here. From this point of view, three experi- 
mental values can be expressed by two.parameters al and ill. It implies 
that special relativity can explain the internal relation of these three experi- 
ments. The disagreement over whether A = 0  is exactly satisfied remains 
unresolved. If A # 0, one has problems in general relativity. On the other 
hand, it is easy to give a description for the special relativistic gravitational 
theory. 

The most important point of  the result is that the preceding special 
relativistic gravitational theory only calculates the contribution of  the E~ 
component  of equation (21) (the contribution of a l ,  a2), and does not 
consider that the gravitational fields tensors of rank three. But this is not 
an essential error of special relativity. 

4.4. The Second Fundamental Hypothesis of  the Special Relativistic 
Gravitational Theory and the Equations of  Gravitational Fields 

Recently, Stacey et al. (1987a, b) discussed a Yukawa potential term 
of  gravity. Correspondingly, we put forward a second hypothesis of  gravita- 
tional theory from the experimental conclusion for r >  1000m. Then we 
develop an auxiliary hypothesis from the experimental results for r < 1000 m. 
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4.4.1. The Second Hypothesis of Gravitational Theory Based on the 
Experimental Data for r > 1000 m 

According to the experimental data for r>  1000m, the second 
hypothesis of special relativistic gravitational theory is that the gravitational 
tensor potential due to a static spherical body is 

- G M  A G 2 M  2 

A44 - c2r 2c4r 2 

A4i = Ai4 = 0 (53) 

\ c r  r ~  

where A = 6A and/32-  GeM2/c 4. Here A44 is the solution of the nonlinear 
equation 

V2A44 + ~. 0A44 OA44 _ 47r_____G 
0)9 Oxj c 2 Po (54) 

in the case of a spherically symmetric source. Since 132 does not appear in 
the first order of approximation, if we assume that/32 = AG2M2/(2c4), then 
it is acceptable for analyzing the experiment. Therefore, equation (53) is 
the solution of the equation 

where 

V2A,,o - + h OA~______~ OAo~_ 47rGpo N~  (55) 
Oxj Ox~ c 2 

' -1  0 0 ! )  
0 -1  0 

N ~ =  0 0 -1  

0 0 0 

(56) 

Using the Lorentz transformation in equation (55), we get the equations of 
gravitational fields due to a moving source, 

02A~ I-AOAv~ -4r176 2 ) 
OxeOx e Ox----~ Oxe - c-------7--- 6~+c- 5 U~U,~ (57) 

or  

a2A'~ + h aA.,o aAo~,~ 8~ ( aZA.__~%+ X aA.__~_~ aA___~.~ -8~rGpoU.U,~ 
Oxj Ox e Ox e Ox e 2 kOX$ OX~ ONe OX~ ,] C 4 

(58) 
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If  the observation of planetary motion indicates that A = 0, then the non- 
linear equation (58) reduces to the linear equation 

02A~o- 6,,,~ 02A,~ -87rGpoU,,U~ 
- -  - ( 5 9 )  

Oxe Oxe 20Xg ~ OXs C 4 

4.4.2. The Revision of the Second Hypothesis in Terms of the 
Experimental Data for r < 1000 m 

Stacey et al. suggest that we have reason to believe that the gravitational 
potential is 

V= - G M  (1 + ae -r/A) (60) 
r 

From this point of view, the second hypothesis of the gravitational theory 
can be revised: the potential tensor due to a sphere is 

A ~  = ..~A (~) _+ ._~A (2) (61) 

where A()~ has the form of equation (53), and 

- a G M  e r/A (62) A ( 2 )  
44  - -  c2r 

This equation is the solution of 

~72A(42)  - -  - - ( 2 )  -8"n'/3Gpo 
~-  it.s Z-144 c2 (63) 

in the case that the source is a sphere, where /3 can be determined from 
the experimental value a, 

/3 = �89 2 exp(-~/~--/z R) (64) 

A(2) The additional Yukawa potential in equation (60) is only relative to rx44 . 

In order to establish the equations of the additional tensor potential field, 
it is necessary to obtain the other A(f~ from experiments. However, the 
following equation is a possible form: 

2A(2) 8 ~Gpo 
" i~'tr  . A ( 2 )  

OX~ OX~ V ["s C4 (/318,,,~ + /32U,,U,~) (65) 

where/3~,/32 are constants determined by experiment. 
This brief discussion has shown that even if the "short-range force" is 

further confirmed by experiment, this would not cause undue problems for 
the special relativistic gravitational theory. 
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5. THE E Q U A T I O N S  OF ELECTROMAGNETIC WAVES IN 
GRAVITATIONAL FIELDS AND THEIR S O L U T I O N S  

5.1. The Equations of Electromagnetic Wave in Gravitational Fields 

We can prove that equation (21) has the form 

aT~ 
= H~,o.T,o. (66) 

Ox~ 

in the case of a continuous medium, where T~  is the stress-energy- 
momentum tensor of the medium. Since the electromagnetic wave has its 
own energy, momentum, and mass, it is also acted upon by gravitational 
fields. As mentioned above, since equation (21) is correct whether mo= 0 
or not, then equation (66) is also correct for electromagnetic waves. In this 
case, we can write 

a 1 1 - -  (F,.,~F,~,~ -~5.,~Fo,~F,~o) = H.,o~-(F.,~,F,~- -~3~o.F~F~,~) (67) 
ox~ 

where F ~  is the electromagnetic field-strength tensor defined by (12) (the 
symbol H.~ is changed to F ~  here). Obviously, the equations of electromag- 
netic waves in gravitational fields have the form that the left-hand side of 
the equation is a partial differential of F ~ ,  and the right-hand side of  the 
equation is the product of the H~o. with F~.. In the case of H~o.-~ 0, this 
set of equations tends to Maxwell's equations. So the left-hand sides of the 
equations of electromagnetic waves have a similar structure to Maxwell's 
equations. They contain two subsets, the vector OF~/Ox~ and the third-rank 
tensor OF.~/OxA +OF~A/Ox.+OF~./Ox~. At the same time, the right-hand 
sides of the equations must be a vector and a tensor of rank three correspond- 
ingly. The tensor of rank three is invariant under the cyclical permutation 
of (/x, v, A). Thus, the equations of electromagnetic waves have the form 

aF~ 
= a,H, ,~.F~ + a2Hr162 (68) 

OX,, 

OF.~ q_OF~a +OFA. 
Oxa Ox~ Ox~ 

+ bdH~.~G. + H~.F~. + H~.Fo~) 

+ b3(H.,~,~F~a + H~,~F~. + H a ~ F . . )  (69) 

We should choose two sets of suitable coefficients a~ and b~ in such a way 
that (67) could be derived from (68) and (69). For this purpose, we have 



Special Relativistic Gravitational Theory  593 

a2 = b3 = 1/2, a I = -bz  = 2/3, and b 1 = -4 /3 .  Using the notation in (12)i we 
can rewrite (69) as 

( B c 2 0 E ~  c 2 V x  - ~ - / = - I ( B •  

1 
+ - [ E "  ~ - I E  S p ( ~ ) - � 8 9  (~)] 

c 

c2(V x E + T t )  = - I ( E  xE(G)+E �9 ~ + ~ �9 E) 

- c [ a .  ~ - I S p ( ~ ) B - � 8 9  x B (c)] (70) 

2 B(G) c2V �9 B = � 8 9  ( L - E  ( ~  
3c 

c2V �9 E= �89  ( L - E ( C ) ) + 2 C B "  B (G) 
3 

where Ei, Bi are the electromagnetic field strengths, E~ c) , BI c) , Li, Pij, and 
R~j are the gravitational field strengths, and 

L, = eqkRjk, Sp(g') =p,,+pz2+P33 (71) 

This set of  equations is invariant under the following transformation: 

Ei --> cBi, cBi --> -Ei  (72) 

5.2. The Propagation of Electromagnetic Waves in the Gravitational Fields 
Due to a Static Sphere 

Using equations (31) and (36) and taking the center of the sphere as 
the origin of  coordinates, we can rewrite (70) as 

- - :  C 2 e r  x B  
Ot 

Ot 

V + \ d r  2 er . E = 0  

V + \ d r  2 er " B = 0  

If the electromagnetic wave is a cylindrical wave, 

(73) 

OEi = O, OB~ - 0 (74) 
Oz Oz 
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then, on  the z = 0 plane, (73) is split into two sets. One set is 

OEx c2(OBz+l d~C y_Bz~ 
~t = \-~y 2dr  r ] 

-at \--~x 2 d r r  ~ 

aB~ aEy oEx l d~xEy-yEx - - 4  
Ot Ox Oy 2 dr r 

OEx4_OEy+(d~, 1 d~) xE~+yEy 
Ox Oy \ d r  2drr r 0 (75) 

Another  set can be obta ined  f rom the t ransformat ion  

Ex ~ cBx, Ey ~ cB,, cB~ ~ -Ez  

In  these two sets o f  equations,  B is perpendicular  to E. 
Suppose  that  the phase  o f  the electromagnet ic  wave is 6 and the 

ampli tudes  o f  E~, E x and  Bz are ax, ay, and b, respectively; then 

Ex = a~ exp(i6),  Ey = ay exp(i6),  B~ = b exp(i~) (76) 

The si tuation differs f rom that  o f  electromagnetic  waves not in a gravitational 
field, in that  all the ampli tudes  and kx, ky, to are funct ions o f  r, where 

o~ o~ 06 
= - -  - to = - -  (77) kx OX' ky Oy' Ot 

Substituting (76) into (75), we obtain a set o f  complex equations,  the 
imaginary  par t  o f  which is 

toax = c2bky, -toay = c2bkx 
(78) 

tob = a~ky - ayk~, k~ax + kyay = 0 

The conclusions o f  (78) are as follows. 

1. We have 

2 c2b 2, or IEI = clBI (79) a2+ay= 

and in the general case, B is perpendicular  to E. 
2. k = (k~, ky), where k is perpendicular  to E and B. 
3. to2 = c2k 2, where the phase velocity o f  light is c. 
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Moreover, the real part of this set of complex equations is 

ab 1 ds yb ab 1 ds xb 
o y -  2dr r '  Ox-  2dr r 

Oay Oax + 1 d( xay - yax= o 
Ox Oy 2 dr r 
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(80) 

(81) 

aax. aay. {d~l 1 d~) xax+yay=o 
~x +-~y t ~-~r 2 -~r r 

if Oax/Ot = Oax/Ot = ob/at = 0. Therefore, we have 

b = bo exp{�89 - ~(r)]} (82) 

Then the energy density of  electromagnetic waves is 

w = Wo exp[~(ro) - sO(r)] (83) 

We consider that (83) is just (46), so we get the formula of the redshift 
immediately. 

Now, we assume that at the point (r, ~) on the Oxy plane, the angle 
of k with the 0x axis is ~-/2+ 0; then we have 

dr sin(0 - q~) 
(84) 

r d~ cos ( 0 - q~) 

and the equation 

a0=(ect_eq cos(0-q) 
dr \ dr dr] sin(0-q~) (85) 

can be derived from (81). Thus, we get 

( dP]2=___~{l_2[~(p)_~,(p)]+...}_p2 (86) 
de/ 

where p = r -1. Finally, due to equation (86), we obtain equation (50), 
namely, the formula of the deflection of light. Therefore, the consequence 
is that the redshift and the angle of light deflection derived from (70) and 
(73) are the same as those from (37) and (38). 

6. EXPERIMENT CAN TEST THE EQUIVALENCE PRINCIPLE 
OF GENERAL RELATIVITY 

As mentioned above, we cannot affirm which is correct, general relativ- 
ity or the special relativistic gravitational theory, based on the experiments 
on the redshift, the deflection of light, and the planetary perihelion shift. 
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However, if A # 0 is found in the observation of the perihelion shift, this 
will cause a problem for general relativity. On the other hand, if the existence 
of  a "short-range force" is confirmed by experiment, then it will support 
the special relativistic gravitational theory. However, we hope to determine 
which of these two theories is true directly from a new experiment. 

Consider the case that there is only the El c) component in the gravita- 
tional field; then 

F~ = mE ~6) (87) 

No matter what mass and velocity the particles have, they have the same 
acceleration. Hence, there is an accelerative frame in which all particles are 
in inertial motion. This is the case which general relativity discusses. In the 
case that there is only a B~ c) component in the gravitational field, the 
gravitational force of (21) is 

F 2 :  rnuxB(~ /c  (88) 

If  two particles with the same mass pass through a gravitational field along 
the x and y axes, respectively, then the directions of the gravitational force 
exerted on both particles are along the - y  and x axes. It is clear that we 
cannot find an accelerative frame such that all particles are in inertial 
motion. If this phenomenon is observed in experiment, then the equivaleh,,e 
principle of general relativity is wrong. 

The property of F2 of (88) is similar to that of the magnetic force. On 
the other hand, since both the gravitational B (c) field and the magnetic field 
are due to a moving field source, these two fields are analogous. The special 
relativistic gravitational theory predicts that there is only a B (~) field in the 
system of  Figure 1 with two rings revolving around their common axis. 
From (59), we have 

B(G) _ -6GMoT 2vR 
c( R2 + b2)3/2 (89) 

O 

Fig. 1 
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and all other field strengths are zero at both ring centers, where Mo, R, and 
V are the mass, radius, and velocity of revolution of the rings, respectively, 
and 2b is the distance between the two ring centers. As mentioned above, 

(G) B~)oz v/c and F2oz (u/c)Bz cos a;  this is the main reason we have not 
observed the effect of  F2 in investigations. 

While Weinberg also discussed the problem of the tenability of  the 
principle of equivalence, the difference between his discussion and that 
introduced above should be apparent. 

In conclusion, the experimental results are more favorable to the special 
relativistic gravitational theory than to general relativity. Still, new experi- 
ments are needed to test which theory is correct. 
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